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IMPROVED APPROXIMATIONS FOR WAVE STRUCTURE FUNCTIONS 
IN A TURBULENT ATMOSPHERE 

 
 
1. INTRODUCTION 

 A basic knowledge of the wave structure function and its use in evaluating the effects of turbulence 
on a light wave propagating through the atmosphere is assumed. The interested reader is referred to 
review articles [1,2] or books [3,4] on this topic. I show below that the familiar form of the plane wave 
structure function [5], D(r) = 6.88(r/r0)5/3, is a poor approximation unless r/LO < 0.01, where LO is the 
outer scale length. Similar remarks apply to the spherical wave structure function. Since r is often on the 
order of 1 m, while for many problems LO is in the range of 10 to 100 m (cf. Beland [1], p. 168, Ishimaru 
[3], p. 360, or Winker [6]), better approximations are clearly desirable. This report presents 
approximations that are good for values of r/LO up to a few tenths. This work extends that of Lutomirski 
and Yura [7] for a pure Kolmogorov spectral density and of Andrews et al. [8] for its von Karman 
modification by including a higher-order term in the expansion and by showing explicitly the range over 
which the approximations are accurate. Failing to state this range is the primary shortcoming of the 
literature. 
 
 I use the standard descriptors of turbulence: LI and LO are the inner and outer scale lengths, KI = 2π/LI 
and KO = 2π/LO are their corresponding wave numbers in Fourier space, Φn(K) = 0.033Cn

2/K11/3, KO ≤ K ≤ 
KI, is the Kolmogorov power spectral density of the turbulence-induced fluctuations in the index of 
refraction of the atmosphere, and Cn

2 is the conventional structure constant.  
 
 The region of interest for this report is r > LI. The fact that D(r) has a different form [1-4] for r < LI 
will not be considered, because, for the problems of interest here, r0 is at least a few centimeters, while LI 
is generally taken to be a few millimters [2-4], which means that D(r) ≈ 0 when r ≤ LI. Also for this 
reason, neither the Tartarski [9] nor the Hill [4,10] corrections to the Kolmogorov power spectrum will be 
considered: they apply to high values of K, hence they have an appreciable effect on the structure function 
only for r < LI. Consequently, the approximation r >> LI will be used, which means that LI is taken as zero 
(KI = ∞) in the integrals that give the structure function.  
 
2. THE PLANE WAVE STRUCTURE FUNCTION  

2.1 The Kolmogorov Power Spectral Density of Turbulence 

 I begin with the plane wave structure function from, for example, Eq. (8.6-29) of Goodman [9], which 
applies to a path of length Z through a region of turbulence described by constant Cn

2 and includes the 
approximations of setting the outer scale to infinity and the inner scale to zero. To show the effect of a 
finite outer scale, I take the lower limit of the integral as KO instead of 0, change the variable of 
integration to u = Kr, and put the result in a form that will be useful below:  
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where k = 2π/λ. Equation (1) expresses the structure function as a multiplicative factor times the quantity 
in brackets, which is a function only of the ratio r/LO. Following Andrews et al. [8], I call this quantity the 
normalized structure function and put it in a form that will be useful below: 
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D*(r/LO) is evaluated by numerical integration of the integral in the first line of Eq. (2) and plotted in 
Figs. 1 and 2, along with the analytic approximations described below. D* is normalized to an asymptotic 
value of 1, a fact that is most easily demonstrated analytically by changing the variable of integration in 
the first line of Eq. (2) to v = u/KOr. The result is  
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since J0(x) → 0 as x → ∞.  
 

  
Fig. 1 ⎯ The four functions plotted are taken from Eqs. (2), (5), (6), and (7) for a plane wave 
and a Kolmogorov spectral density. The solid line is the numerically calculated wave structure 
function; the other lines are analytic approximations (see text). 
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Fig. 2 ⎯ Detail of Fig. 1, with range limited to r/LO ≤ 0.05 and D*3 not plotted. D* and D*2 are 
nearly identical in this region. From Eq. (5), D*1 is the normalized form of the usual approximation 
to the wave structure function, that is, D*1(r/LO) ∝ (r/LO)5/3. 

 
 

 For most problems of interest, r << LO. In order to find analytic expressions for D* in this regime, I 
take the first integral in the second line of Eq. (2) from Eq. (8.6-30) of Goodman [9] and the second from 
Eq. (A1) of this report’s Appendix. The result is a power-series expansion, with powers 0, 1/3, and 7/3 of 
the quantity in braces in Eq. (2):  
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I denote by the subscripts 1, 2, and 3, the one-, two-, and three-term expansions of D* and of D. Thus,  
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and 
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These functions are plotted in Figs. 1 and 2, from which we see that D*1 is reasonably accurate only for 
r/LO < 0.01, while D*2 extends this range dramatically to r/LO ≤ 0.2, and D*3 yields a further 
improvement to r/LO ≤ 0.4. Higher-order terms can be calculated by continuing the expansion of 1 – J0(u) 
in Eq. (2), but are unlikely to be useful.  

 
 Substitution of Eq. (4) into Eq. (1) yields 
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where the definition of the Fried coherence length [5], r0 ≡ [6.88/(2.91Cn

2k2Z)]3/5, has been used. D1(r) is 
the structure function for infinite outer scale,  
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and is the form most often used, with the qualification that it is valid only when r << LO, a qualification 
that Fig. 2 shows to be very true: even when r is only 1% of LO, D1(r) exceeds D(r) by about one-third 
(35%, to be exact). Probably the most useful approximation is   
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which is good for r/LO ≤ 0.2 and is identical with Eq. (6) of Lutomirski and Yura [7], who did the 
calculation the same way, but kept only the first term in the expansion of 1 – J0(u). D3(r) is given by the 
last line of Eq. (8). 
 
2.2 The Von Karman Power Spectral Density of Turbulence 

 The von Karman spectral density is the Kolmogorov spectral density with a roll-off applied at low 
frequencies: Φn(K) = 0.033Cn

2/(K2 + KO
2)11/6, as shown in Eq. (8.4-16) of Goodman [9] (the exponential 

high-frequency attenuation also shown in this equation is the Tartarski correction to the Kolmogorov 
spectrum and, as explained in the introduction, is not used here). This allows the lower limit of the 
integral in Eq. (1) to be zero, as done by, for two examples, Andrews et al. [8] and Goodman [9], which 
corresponds to the physical assumption that there is no low-frequency cut-off in the turbulence power 
spectrum. (The reader’s attention is called to the notational oddity of using the symbol KO for the von 
Karman roll-off frequency, then extending the lower limit of the integral to zero, which, under the 
definition of KO used for the Kolmogorov density, would imply KO = 0.) The assumption of no low-
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frequency cut-off may be poor, especially in near-surface propagation problems, and in any case there is 
no obvious connection between the cut-off frequency and the roll-off frequency. I therefore use the 
parameter a to relate the cut-off frequency, aKO, to the roll-off frequency, KO, and assume 0 ≤ a ≤ 1. 
When this form is inserted into Goodman’s Eq. (8.6-29), Eq. (1) becomes 
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so the normalized structure function is, as in Eq. (2), 
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D*vK(r/LO) is evaluated by numerical integration of Eq. (12) and plotted in Figs. 3 and 4, along with the 
analytic approximations described below. 
 
 The quantity in braces in Eq. (12) is less analytically tractable than is the similar expression in Eq. 
(2). For a = 0, the second integral disappears and, as shown by Andrews et al. [8] (by using 
hypergeometric functions!), the first can again, as in Eq. (4), be evaluated as a power series in KOr. 
Taking KOr = 0, comparison of Eqs. (12), (2), and (4) shows that the coefficient of order 0 is again 1.118. 
The coefficient of order 1/3 was found by Andrews et al. to be – 1.485. As in Eq. (4), these values are 
multiplied by 35.66 to yield 39.86 and – 59.2, respectively, in Eq. (13). The second integral in Eq. (12) is 
given by Eq. (A2) in the Appendix and shown to change the second coefficient from – 1.485 to – 1.511 (a 
1.8% change) when a = 1, less when a < 1. I consider this difference to be negligible and only the value – 
59.2 is used in Eq. (13) and in Figs. 3 and 4, that is, the second term in Eq. (13) is approximated as being 
independent of a. Figure 3 shows the validity of this approximation: D*vK is essentially independent of a 
over the region in which D*vK,2 is good. The third coefficient in Eq. (13) was found by the simple 
expedient of adopting the form of Eq. (4), replacing – 49.35 by – 59.2, and varying the last coefficient 
until a visually good fit was obtained. The astute reader will notice that this coefficient was chosen to 
extend the region over which D*vK,3 gives a good approximation; it is not the coefficient that would be 
obtained in a Taylor series expansion (the error of the latter would probably be monotonic, as in Fig.1, not 
first negative, then positive). The result is  
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which is reasonably valid for r/LO ≤ 0.25. D*vK,1 and D*vK,2 are also given by Eq. (13). The von Karman 
equivalent of Eq. (8) is  
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Fig. 3 ⎯ Similar to Fig. 1, but with von Karman spectral density and functions given by Eqs. 
(12) and (13). D*vK,1 = D*1 is the same as in Figs. 1 and 2. For a = 1 the low-frequency cut-off in 
the turbulence power spectrum is the same as the von Karman roll-off frequency, for a = 0 the 
spectrum extends to zero frequency. Asymptotic values are given in Eq. (15).  

 
 
 

 
Fig. 4 ⎯ Detail of Fig. 3. D*vK is plotted for a = 0. For a = 1, D*vK changes 

by less than 3% in the region shown. 
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Omitting the last term inside the brackets in Eq. (14) yields DvK,2, which is the same as Eq. (5) of Andrews 
et al. for LI << r << LO.  
 
 The asymptotic value in Fig. 3 is calculated as in Eq. (3): 
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With the help of Eq. (15), it is easy to estimate D*vK in Fig. 3 for intermediate values of a.  
 
3. THE SPHERICAL WAVE STRUCTURE FUNCTION 

3.1 The Kolmogorov Power Spectral Density of Turbulence 

 The spherical wave structure function can be found by steps similar to those used for the plane wave 
structure function. I begin with Eq. (61) from Chap. 6 of Andrews and Phillips [4] and change the 
variable of integration to u = Kξr:    
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from which the normalized structure function is found, as in Eqs. (2) and (4), to be  
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D*sph is evaluated by numerical integration of the double integral in the first line of Eq. (17) and plotted in 
Figs. 5 and 6, along with the analytic approximations D*sph,1,2,3, which are easily read from the last line of 
Eq. (17). By repeating the analysis given in Eq. (3), with v = u/KOξr, it is easy to see that D*sph, like D*, is 
normalized to an asymptotic value of 1:  
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Fig. 5 ⎯ Normalized structure functions from Eqs. (16) and (17) for a spherical wave and 

Kolmogorov spectral density  
 
 
 

 
Fig. 6 ⎯ Detail of Fig. 5 
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Substitution of Eq. (17) into Eq. (16) yields 
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The Dsph, 1,2,3 are easily read from Eq. (19). 
 
3.2 The Von Karman Power Spectral Density of Turbulence 

 I combine the procedures in Sections 3.1 and 2.2. With the von Karman spectral density, Eq. (16) 
becomes 

 ( ) ( )
( )

12 2 2
5/ 3 0

, 11/ 65/ 3 2 2 2 2
0

16(2 ) 0.033 5( )
5 3

O

n
sph vK O

O aK r O

J uC k ZD r K r udud
K u K r

∞

ξ

⎡ ⎤−π ⎢ ⎥= ξ ξ
⎢ ⎥+ ξ⎣ ⎦
∫ ∫   . (20) 

 
The expansion of the second integral in the brackets in Eq. (20) can again be done in terms of 
hypergeometric functions [8], but it is far easier to repeat the process that led to Eq. (13) and expand this 
integral in a power series of orders 5/3, 2, and 4 in the quantity KOξr. The integral over ξ is then simple, 
as in Eq. (17). The result is  
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O O O

ar r rD
aL L L

∗ =⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎧ ⎫
≈ − + ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎩ ⎭⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠O

r
L

, (21) 

 
where the first coefficient (= 14.95) comes from Eq. (17), the second (= – 19.7) from Andrews et al., and 
the third was found by achieving a visually good fit. These quantities are plotted in Figs. 7 and 8. The von 
Karman equivalent of Eq. (19) is  
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, ,3
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( ) 2.58 1 1.32
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O O

ar rD r
ar L L
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⎢ ⎥= − + ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎢ ⎥⎩ ⎭⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

  . (22) 

 
Omitting the last term inside the brackets in Eq. (22) yields Dsph,vK,2, which is the same as Eq. (22) of 
Andrews et al. for LI << r << LO. 
 
 Equation (18) shows that the asymptotic values of D*sph and D* are the same. The same analysis 
applied to the quantity in brackets in Eq. (20) shows that the asymptotic values of D*sph,vK and D*vK are 
the same, and they are given in Eq. (15). 
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Fig. 7 ⎯ Similar to Fig. 5, but with von Karman spectral density and functions taken from Eqs. 
(20) and (21). D*sph,vK,1 = D*sph,1 is the same as in Figs. 5 and 6. Asymptotic values are again 
given by Eq. (15).  

 

 

 
Fig. 8 ⎯ Detail of Fig. 7 
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4. THE INDEX-OF-REFRACTION STRUCTURE FUNCTION 

 I now examine the effect of a finite outer scale on the structure function of the turbulence-induced 
fluctuations of the atmosphere’s index of refraction. While this quantity is not usually of direct interest for 
the beam-propagation problem, it is part of the derivation of the wave structure function and the reader 
may be curious. It is normally expressed as Dn(r) = Cn

2r2/3, which is exact only for an infinite outer scale, 
so the question naturally arises as to how good this approximation is for finite outer scales. I show below 
that the r2/3 approximation to the index structure function, being valid at least up to r/LO = 0.1, is much 
better than the r5/3 approximation is to the wave structure function.  
 
4.1 The Kolmogorov Power Spectral Density of Turbulence 

 I take the index structure function from Eq. (8.4-21) of Goodman [9], with a lower limit of KO instead 
of 0, and apply the usual steps:  
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2 / 3

2 /3 5/ 3

1
( ) 8 0.033
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−
= π×

⎡ ⎤−π×
= ⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫
   (23) 

 
where S(x) ≡ sinx/x. 1 – S(x) ≈ x2/6 – x4/120, so the normalized structure function is  
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⎪ ⎪⎝ ⎠⎝ ⎠ ⎩ ⎭
⎧ ⎫⎪= − +⎨
⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫

⎪
⎬    (24) 

 
Dn*, from the brackets in Eq. (23), is evaluated by numerical integration (as is the first integral in Eq. 
(24)) and plotted in Figs. 9 and 10, along with the Dn*1,2,3. Observe that in this case Dn*1 is a much better 
approximation than was the case for the wave structure function: it is good at least to r/LO = 0.1. Dn*2 
extends the range to 0.3 and Dn*3 to 0.5 (being generous). The asymptotic value in Fig. 9 is easily shown 
to be 1. Dn(r) can now be approximated as  
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3 8 400
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⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

   (25) 

 
Equation (25) shows why the correction for finite outer scale is less important for the index structure 
function than for the wave structure function: the first correction term is proportional to (r/LO)4/3, which is 
a smaller quantity for small r/LO than is (r/LO)1/3.   
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Fig. 9 ⎯ Normalized index-of-refraction structure functions for a Kolmogorov spectral density, 
from Eqs. (23) and (24). 

 

 

 
Fig. 10 ⎯ Detail of Fig. 9 
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4.2 The Von Karman Power Spectral Density of Turbulence 

 For the von Karman spectral density, Eq. (23) becomes  
 

 ( ) ( )
( )

2
2 / 3 2

, 11/ 62 /3 2 2 2

112 0.033 2( ) .
3

O

n
n vK O

O aK r O

S uCD r K r u du
K u K r

∞⎡ ⎤−π× ⎢ ⎥=
⎢ ⎥+⎣ ⎦

∫    (26) 

 
In analogy to Section 3.2, but with visual curve fitting used to find both the second and the third 
coefficients, the normalized structure function is found to be 
 

 
2 / 3 2 4

, 2.75 11 120n vK
O O O

r r rD
L L L

∗ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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r
L

. (27) 

 
Dn*vK is plotted in Figs. 11 and 12 along with the Dn*vK,1,2,3. These figures show that over the range of 
applicability of Eq. (27), all the coefficients are essentially independent of a. The asymptotic values in 
Fig. 11 cannot be calculated analytically. Finally, 
 

 
4 / 3 10 / 3

2 2 / 3
, ( ) 1 4.0 44n vK n

O O

r rD r C r
L L

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢≈ − +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥   . (28) 

 

5. APPLICATIONS 

 We have seen that if LO exceeds the relevant values of r by a factor of at least 100, then the traditional 
form of the plane wave structure function, D(r) ≈ 6.88(r/r0)5/3, is valid. This is often the case for 
astronomical observations [11-14], but not for horizontal transmission problems near the Earth’s surface, 
where approximations to D(r) that take the outer scale into account are more useful. They are also useful 
for optical systems with imaging times of a few milliseconds. Over these short times, the atmosphere may 
be considered fixed, and most problems can identify a scale length, call it L1, beyond which disturbances 
affect only the tilt of a wave front and, therefore, not the resolution of the optical system. Thus, we might 
select L1 = 10Dap for an aperture diameter Dap. If (assuming L1 ≤ LO) Φn(K) is cut off at the corresponding 
wave number K1, then the resulting effective structure function Deff (r) is likely to be a better means of 
evaluating performance than D(r) and, since Dap/L1 = 0.1 > 0.01, is much more accurately given by the 
forms presented here than by the traditional form, which, as shown in Eqs. (8) and (9), is just a first 
approximation.  
 
 Another application is to computer-generated phase screens that are used to simulate the effect on a 
propagating wave front of passage through the atmosphere in the presence of turbulence (see, for two 
examples, Lucke [15] and Lane et al. [16]). One test of whether or not the phase screen has been properly 
generated is whether or not it generates the correct phase structure function when a plane wave passes 
through it [16]. After a plane wave has passed through a phase screen, but before it has propagated a 
significant distance from the screen, its amplitude is unaffected, so the phase structure function and the 
wave structure function are identical. Therefore, since the width of a phase screen is rarely less than about 
a meter, while relevant outer scales are often less than 100 m and sometimes less than 10 m, the equations 
and figures for the various structure functions given here should provide a much better test than Eq. (9) of 
whether or not a phase screen has been properly generated.  
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Fig. 11 ⎯ Normalized index-of-refraction structure functions for a von Karman spectral density, 
from Eqs. (26) and (27). Dn*vK,1 = Dn*1 is the same as in Fig. 9. 

 
 
 

 
 

Fig. 12 ⎯ Detail of Fig. 11 
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Appendix 
 

EVALUATING THE SECOND INTEGRALS IN EQS. (2) AND (12) 
 

 The second integrals in Eqs. (2) and (12) are done by using the approximation 1 – J0(u) ≈ u2/4 – u4/64. 
With this substitution, the second integral in the second line of Eq. (2) becomes 
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 For the second integral in Eq. (12), we need only the first term in the approximation:  
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Finally, – 1.485 – 0.026 = – 1.511. 
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